
Approved for public release;
distribution is unlimited.

:QAlamos
NATIONAL LABORATORY
---EST.1943 ---

Title: Recent Advances and Future Prospects for Monte Carlo

Author(s): Forrest B. Brown

Intended for: Supercomputing in Nuclear Applications & Monte Carlo 2010
17-21 October 2010, Tokyo, Japan

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form B36 (7/06)

RECENT ADVANCES AND FUTURE PROSPECTS FOR MONTE CARLO

Forrest B. BROWN

Los Alamos National LaboratOlY, Los Alamos, NM. 87545, USA

The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo ~rogram
was written in 1947 for the EN lAC; a pre-release of the first Fortran compiler was used for Mon~e Carlo In 1957;
Monte Carlo codes were adapted to vector computers in the I 980s, clusters and parallel computers In the 199.0s, and
teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combini.ng threaded calculatIOns on
multicore processors with message-passing among different nodes. WIth . the advances In computmg, Monte Carlo
codes have evolved with new capabilities and new ways of use. ProductIon codes such as MCNP, MYP, MONK,
TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former
"method 'Of last resort" has now become the first choice for many applications. Calculations are now routmely
performed on office computers, not just on supercomputers. Current research and development efforts ~re

investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reachmg
research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1 M or more
concurrent computational processes.

KEYWORDS: parallel, reactors, supercomputing, exaflop systems

I. The First 60 Years of Monte Carlo Codes

The history of Monte Carlo methods is closely linked to
that of computers:

The name itself comes from the Manhattan Project in
1945 1

) . The first electronic computer - the ENIAC - was
nearing completion and was the subject of much discussion
among Stan Ulam, John von Neumann, Nicholas Metropolis,
and others. The proposal to use the ENIAC for the statistical
method lied Metropolis to suggest the name "Monte Carlo."

During 1947, von N eumann2
) developed the first known

computer program for performing Monte Carlo calculations.
The description of the program logic is remarkably similar to
what is still done today in modern Monte Carlo codes. (In
fact, portions of MCNP coding appear to have originated
from von Neumann ' s program, migrated through several
generations of assembly language and Fortran .) In describing
the program, von Neumann estimated that 100 neutrons with
100 collisions would take 5 hours on the ENIAC (with its
18,000 vacuum tubes). Today that would take milliseconds.
The first symposium on the Monte Carlo method was held in
1949.

The first Monte Carlo codes were written in the 1940-50s
in very low-level languages (e .g., machine language,
assembler, FLOCO, etc.). In 1957, a pre-release of the first
Fortran compiler developed at IBM arrived at the Bettis
laboratory3) (2,000 punched cards for a binary image of the
compiler). The very first program tested failed due to a
program syntax error, perhaps the first case of user
frustration and debugging with Fortran, but then successfully
compiled and executed on an IBM 704. Lew Ondis began
using the new compiler for Monte Carlo codes.

During the 1960-80s, extensive capabilities were added to

Monte Carlo codes running on mainframe computers (e.g ..
CDC-6600, CDC-7600, Cray-I, etc.), often involving drums,
extended core memory devices, disks, and punched cards. In
the 1980s, a few codes were developed for vector
computers4

,5,6) and then extended to parallel/vector
computers such as the Cray-XMP, -YMP, -C90, -J90 series.
During the 1990s, paraliel Monte Carlo became
commonplace due to the arrival of workstation clusters and
modestly priced parallel systems. Early parallel
computations typically used 4 or 8 processors at first, and
then dozens of processors connected via PYM or MPI
message-passing. During the 2000s, Monte Carlo parallelism
was extended to I ODs and 1000s of processors.

With the arrival of multicore processors in the 2000s,
some Monte Carlo codes were adapted to use threaded
parallelism, using pthreads, OpenMP, or vendor-specific
pragmas. With care, local parallelism using threading on
mu Iticore processors can be combined with global

I·· . d 7) At paralle Ism usmg message-passmg among 111 0 es . a
higher level , independent Monte Carlo jobs can be run
concurrently, combining results later Uob parallelism). Such
hierarchical parallelism - parallel jobs, message-passing,
multicore threading - is necessary to fu]lly utilize today's
largest teraflop and petaflop computing systems. Monte
Carlo calculations have been run using 10,000s of
processors.

Perhaps more significant is the tremendous growth in
power of office computers and laptops. These have
progressed from Kflops in the 1990s to Mflops in the 2000s,
to Gflops today, with multicore processors in all current
laptops and office computers. Today's laptops outperfonn
supercomputers of the 1990s, so that Monte Carlo codes can
now be easily used by anyone. This step change in

accessibility has led to routine use of Monte Carlo by
students, researchers, and engineers.

The tremendous growth in computer capabilities has
facilitated the development of new features and techniques
in Monte Carlo codes. Over the past 63 years of methods and
code development for Monte Carlo, there has been steady
progress in all areas: Geometry modeling capabilities began
with a dozen or fewer regions, then grew to a few 1000s in
the I 970s, 10-lOOK in the 1990s, and now to millions or
more in some codes. The introduction of hierarchical
geometry (i.e., embedded geometry, " holes", " universes",
etc.) has enabled large models with reusable geometry parts .
Physics interaction data as provided by libraries of nuclear
cross-sections has likewise grown from nonexistent to the
current ENDF/B-VII libraries that can require gigabytes of
storage.

The past 63 years of Monte Carlo history represent a huge
investment in the research and development of random
number generators, random sampling methods, criticality
calculation methods, variance reduction techniques, physics
interaction modeling, geometric ray-tracing, parallel
computing methods, physics interaction data libraries, and
code development. Of even more significance is the very
large effort devoted to the verification and va I idation of
Monte Carlo codes. As a result of the huge investment of
resources, a number of long-lived and respected Monte
Carlo codes are available: MCNP, MVP, MONK, TRIPOLI,
SCALE, and many others. These codes are 20-30 years old
(or more) and have extensive modeling and analysis
capabilities that have undergone many years of use and
testing. They represent a formidable level of capabilities that
new or future codes must surpass to achieve widespread,
general-purpose use.

The combination of realistic and detailed geometry and
cross-sections, essentially model ing everyth ing with high
precision, has motivated more users to apply Monte Carlo to
their problems. It is common today for analysts to run
billions of particles for a problem, rather than the millions or
thousands of a decade ago .

n. The Next Years of Monte Carlo Codes

In the previous section, the maturity and rich list of
features in today ' s most-used Monte Carlo codes were cited
as distinct benefits of the past 63 years of Monte Carlo
development. Extending those Monte Carlo codes with ever
more features over the years has a cost, however. As
software packages become larger, the burden for
maintenance, documentation, user support, and verification
and validation grows excessively. After 20-30 years of
adding new features, new development is impeded by older
code structure and logic, obsolete data structures, and coding
style that often resembles assembly language. The
algorithms and data structures in many mature codes were
first developed for problems with only a dozen or so regions
and materials . While the codes have been (painfully)
modified over the years to now handle many 1000s of
materials and regions, extension to millions or billions of

materials and regions is difficult. Rewriting the older, mature
Monte Carlo codes in a modern form without sacrificing
existing capabi lities is an expensive endeavor8

), seldom
accomplished . For effective use on today' s large HPC
systems, many new Monte Carlo codes are being developed
to take full advantage of the new architectures. Such codes
as SERPENT, MC21, McCARD, MCP, Monaco, GMVP,
and many others are newer and more readily adapted to
large-scale applications. In the near future, these codes will
most likely focus on the hierarchical parallelism developed
in the 2000s, with threading on multicore nodes and MPI
message-passing among nodes. Currently available HPC
systems support up to 16 threads per node, with 1,000s of
nodes. Within the next few years, the number of threads per
node will rise dramatically - initial testing is underway for
manycore processors with 32,48, 80 and more cores.

An alternative approach to clusters of multicore or
manycore nodes is heterogeneous computing systems, with
some specialized hardware processors included either
independently or attached to conventional cpus. Examples
include FPGAs, GPUs, GPGPUs, and Cell processors. This
type of special purpose processor was originally used solely
for graphics support and visualization, and typically utilizes
pipelined or vector functional units, with additional
parallelism from replicated functional units. The capabilities
of these GPGPU processors have grown rapidly in the last
few years, leading to significant gains in speed if a
calculation can be cast in vector form . Since vectorization of
Monte Carlo was proven 30 years ag04

•
5
), it would appear

straightforward. In practice, however, existing mature codes
would have to be entirely restructured and large'ly rewritten
to take advantage of vectorization; that ·is prohibitively
expensive and would invalidate many years of verification
and validation work . New or future Monte Carlo codes show
the most promise for utilizing GPGPUs, since algorithms
and data structures are flexible when developing new codes.
Some of these efforts are showing excellent results9

). It
should be noted that determining the effectiveness of
GPGPUs in speeding up Monte Carlo is difficult. Often the
GPGPU timings are compared to single-threaded runs on a
conventional processor, when they should more realistically
be compared to threaded calculations.

In addition to Monte Carlo development to leverage the
advances in computing, there is an abundance of methods
development in progress, enabled by the higher speeds and
larger memories. These efforts include: (l) New adjoint
weighted tally schemes for continuous-energy Monte Carlo
criticality calculations 10), permitting correct calculation of
reactor kinetics parameters, perturbations in reaction rates,
and sensitivity-uncertainty parameters. (2) New iteration
methods for criticality calculations, such as Wielandt's
method II), that may accelerate convergence and eliminate
the underprediction bias in uncertainties. (3) On-the-fly
Doppler broadening of neutron cross-sectionsI 2

), to finally
permit a continuous distribution of material temperatures . (4)
New types of tallies, such as Kernel Density Estimators
(KDE) 13) and functional expansion tallies (FET) 14), that
permit continuous variation over regions, rather than just
simple averages. (5) Depletion analysis of fuel assemb'lies

and reactors l5.161, including equilibrium Xenon and control
searches. (6) All-particle, all-energy Monte Carlo codes I7

).

(7) Stochastic geometryl8) for modeling the random locations
of fuel particles in newer reactor fuel systems. (8) Improved
treatment of the free-gas scattering model at epithermal
neutron energies 19) to include important resonance scattering
effects . (9) Coupled calculations involving both Monte Carlo
and deterministic transport codes20

) to enable more effective
variance reduction. There are many more such efforts in
progress.

Ill. Future Prospects for Monte Carlo Codes

High performance computing systems have evolved from
Mtlops in the 1980s, to Gtlops in the 1990s, to Ttlops in the
2000s, and now to Ptlops in the 20 lOs. Each jump in
performance was enabled by a combination of advances in
integrated circuit design and fabrication, changes in system
architecture, and new software technology. There are
currently intense efforts21

) to continue the trend and provide
exaflop performance by 2020. While specific system
characteristics and architecture for exaflop systems are still
under investigation, several broad predictions can be made:

(1) There will be massive parallelism, with 1-100 M cpu
cores. None of the scientific and engineering software in use
today can be scaled to such extreme processor counts. The
only way to fully utilize the massive parallelism on exaflop
systems with today's software is to run many 1,000s or more
parallel jobs. This approach to exascale computing would
support parameter studies, where very large numbers of jobs
are run with different combinations of code input parameters
to span the phase space of a multidimensional problem. It
would also support uncertainty quantification analysis,
where very many individual code input parameters are
varied in separate calculations to assess the sensitivity of
problem results to uncertainties in the code input parameters
and then estimate the overall uncertainty on calculation of a
physical problem. The running of many 1,000s of parallel
jobs, however, would not impact the running time of a single
job and would do little for the day to day work of most
engineers and scientists. To take advantage of exaflop
computing power for single jobs, changes in today's
software are required.

(2) One of the key considerations in designing future
exaflop systems is greatly reducing the power consumption
per compute node. (With today's technology, an exaflop
system might consume as much as 500 MW, clearly
prohibitive.) Large reductions in power requirements imply
that future cpu clock cycles may be little different from those
oftoday's cpus, and that the amount of memory per cpu-core
may even be smaller than today. The coming limits on or
reduction in memory per cpu-core will have a huge impact
on software development. (As a current example, consider
MCNP5 and the first IBM BlueGene systems. Even though
MCNP5 supports hierarchical parallelism at the job,
message-passing, and threading levels, and has been run
with 10Ks of cpu-cores, it was unable to run on the first
BlueGene systems due to the very limited amount of
memory per cpu-core.) Changes in software are needed to

accommodate the expected reduction in memory per cpu
core. Large datasets required for a calculation will need to be
distributed across many nodes, and codes will need to
remotely access the distributed data. Latencies imposed by
remote data access will need to be masked by executing even
more threads than there are cpu-cores (much like the
hyperthreading done today on single cores), leading to even
more parallel processes.

(3) Distributing large datasets across nodes and remotely
accessing the data has even further implications for code
developers . While many large datasets are read-only, such as
material properties, nuclear cross-sections, and geometry
descriptions, other datasets require read-write access. For
Monte Carlo codes in particular, the tally data may comprise
a very large dataset that needs to be accessed by all
individual particle history compute nodes. In today ' s codes
tally data is retrieved from memory, a particle's contribution
is added to the data, and then the data is stored back into
memory. The particular tally location being modified must
be locked (or replicated) to permit only one particle history
to modify it at a time. With very large distributed datasets
for tallies, a different approach is needed. Tally data for a
particle needs to be transmitted to a remote node where a
section of the shared tally dataset resides, and a remote
operation needs to be performed. That is, while the tally
contribution is computed locally, updating the overall tally
dataset is done remotely . The remote node holding a section
of the tally dataset is then responsible for locking the proper
data, performing the arithmetic to update the overaJi tally,
and then unlocking that portion of the remote data. Thus the
particle history portion of a Monte Carlo code may be
performed locally, but material and geometry properties will
be fetched from remote nodes, and results must be tallied by
remote add-to-memory operations.

It may be argued that much of the discussion above
regarding modified Monte Carlo algorithms could be
avoided by using domain decomposition methods, where
problem spatial domains are divided among processor nodes,
and particles move between nodes. While such approaches
have had limited success in the past 10 years, they are
doomed to fail on exaflop systems. The inherent parallelism
in Monte Carlo calculations is on particle histories, not
spatial domains. The particles travel where they will , based
on the physics and geometry of a problem. With millions or
billions of spatial domains, a very large fraction of the
domains would contain no particles and remain idle. Parallel
efficiency would approach zero. Load balancing techniques
would likewise not be effective since they require global
communications and then global redistribution of the particle
workload - a serious problem for a system with millions or
billions of cpu-cores.

The future of Monte Carlo for the largest problems on
exaflop systems may well involve " Monte Carlo swarms" - a
very large number of Jight-weight Monte Carlo kernels with
minimal memory requirements, remotely accessing
distributed data via remote memory fetches, and performing
tallies using remote add-to-memory operations. In this

scheme, the problem data are decomposed and distributed,
but rather than assigning particles to compute nodes based
on their spatial coordinates, parallelism on particles is
achieved by having each compute node retrieve geometry
and cross.section data remotely from other nodes on Iy as
needed. This approach ensures that each compute node
follows the same number of particles and thus performs
approximately the same amount of work, so that scal ing to
very large numbers of processors is effective. There is no
overhead in moving particles among processors, and the
mapping of the particle and data processes onto the
computing nodes is very flexible. While individual particle
histories may take longer due to delays from remote access
to data, the almost unlimited number of processors available
provides massive parallelism to achieve overall large
speedups.

This proposed approach to Monte Carlo on future exatlop
computing systems represents a new parad igm for parallel
Monte Carlo. While the basic coding for Monte Carlo
particle histories can remain largely unchanged in existing
codes, calls to remote data access routines must be inserted
at the proper points to remotely fetch needed data and then
perform local operations with that data. In principle, the
codes could monitor in real-time the portions of the remote
datasets they have been accessing most frequently and learn
from that information, to subsequently prefetch data in an
anticipatory fashion .

Fortunately, exaflop systems are 8-10 years in the future,
so that there is sufficient time to investigate new approaches
to massive parallelism for Monte Carlo codes. It must be
stressed that the time to investigate such alternate
approaches is now, not 8-10 years from now, so that
alternate schemes will be available when the exatlop systems
arrive. Some work has already begun22

).

References
I) N. Metropolis, "The Beginning of the Monte Carlo method",

Los A lamas Science, Special Issue 1987 (1987).
2) R.D. Richtmyer and 1. von Neumann, "Statistical Methods in

Neutron Diffusion", LAMS-SSI (1947).
3) H. Bright, "FORTRAN Comes to Westinghouse-Bettis, 19S7",

IEEE Annals of the History of Computing. Vol. I , No. }, pp. 72-

74. July (1979).
4) F. B. Brown and W. R. Martin, "Monte Carlo Methods for

Vector Computers," J. Progress in Nuclear Energy, Vol. 14, No.
3, 269-299 (1984).

S) W. R. Martin and F. B. Brown, "Present Status of Vectorized
Monte Carlo for Particle Transport Analysis," International
Journal of Supercomputer Applications, Vol. I, No.2, 11-32
(June 1987).

6) M. Nakagawa, T. Mori and M. Sasaki, "Monte Carlo
Calculations on Vector Supercomputers using GMVP," Prog.
Nue/. Energy, 24, 183 (1990).

7) X-S Monte Carlo Team, "MCNP - A General N-Particle
Transport Code, Version 5 - Volume I: Overview and

Theory", LA-UR-03-1987, Los Alamos National Laboratory
(April,2003).

8) F.B. Brown, " MCNPS Development, Verification, and
Performance", Supercomputing in Nuclear Applications 2003,
Paris, France, Sept. 22-24 (2003).

9) 1. Tickner, "Monte Carlo Simulation of X-ray and Gamma-ray
Photon Transport on a Graphics-Processing Unit", Computer
Physics Communications, doi: 10.1016/j.cpc.2010.07.00 1
(20 10).

10) B.C. Kiedrowski , F.B. Brown, & P. Wilson, "Calculating
Kinetics Parameters and Reactivity Changes with Continuous
Energy Monte Carlo", ANS PHYSOR-2010, Pittsburgh, PA,
May 9-13 (2009).

II) F.B. Brown, "Wielandt Acceleration for MCNPS Monte Carlo
Eigenvalue Calculations", M&C+SNA-2007, Monterey, CA,
April IS-19, 2007 (April 2007).

12) G. Yesilyurt, W.R. Martin, F.B. Brown, "On-The-Fly Doppler
Broadening for Monte Carlo Codes", ANS M&C-2009,
Saratoga Springs, NY, May 3-7 (2009).

13) K. Banerjee & W.R. Martin, "Kernel Density Estimation
Method for Monte Carlo Tai llies with Unbounded Variance",
Trans. Am. Nucl. Soc., Vol. 101 (2009).

14) D.P. Griesheimer, "Functional Expansion Tallies for Monte
Carlo Simulations", Ph.D dissertation, University of Michigan
(200S).

IS) Leppanen, 1., 2009. PSG2/Serpent - A Continuous-energy
Monte Carlo Reactor Physics Bumup Calculation Code, User's
Manual (February 2, 2009). VTT Technical Research Centre of
Finland.

16) T.M. Sutton , et aI., "The MC21 Monte Carlo Transport Code",
M&C+SNA-2007, Monterey, CA, April IS-19 (2007).

17) F.B. Brown, et aI., "Reactor Physics Calculations with MCNPS
and the Status of MCNP6", workshop for PHYSOR-20 I 0,
Pittsburgh, PA, May (2010) [available at URL:
http://mcnp-green .lantgov/publication/pd fIla-ur-1 0-
02762 yhysor20 I 0_ workshop.pd f]

18) F.B. Brown & W.R. Martin, "Stochastic Geometry Capability
in MCNPS for the Analysis of Particle Fuel", Annals of
Nuclear Energy. Vol 31 , Issue 17, pp 2039-2047 (2004).

19) B. Becker, R. Dagan, G. Lohnert, "Proof and Implementation
of the Stochastic Formula for Ideal Gas, Energy Dependent
Scattering Kernel", Annals of Nuclear Energy 36, 470-474
(2009).

20) D. E. Peplow and 1. C. Wagner, "Automated Variance
Reduction for SCALE Shielding Calculations," in Proc. of ANS
14th Biennial Topical Meetillg of the Radiation Protection and
Shielding Division , pp. 556-S58, Carlsbad, New Mexico, April
2-6,2006.

21) See conference proceedings from the past few years, for
example: URL hnp://www.lanl.gov/orgs/hpclsalishan/

22) P. Romano, B. Forget, F. Brown, "Towards Scalable Parallelism
in Monte Carlo Particle Transport Codes Using Remote
Memory Access", Joint International Conference on
Supercomputing in Nuclear Applications and Monte Carlo
2010 (SNA + MC2010) Hitotsubashi Memorial Hall, Tokyo,
Japan, October 17-20 (20 I 0).

